Archives: Paper

Leveraging power grid topology in machine learning assisted optimal power flow

Published at IEEE-TPS. Machine learning assisted optimal power flow (OPF) aims to reduce the computational complexity of these non-linear and non-convex constrained optimization problems by consigning expensive (online) optimization to offline training. The majority of work in this area typically employs fully connected neural networks (FCNN). However, recently convolutional (CNN) and graph (GNN) neural networks […]

Practical Conditional Neural Processes Via Tractable Dependent Predictions

Conditional Neural Processes (CNPs; Garnelo et al., 2018a) are meta-learning models which leverage the flexibility of deep learning to produce well-calibrated predictions and naturally handle off-the-grid and missing data. CNPs scale to large datasets and train with ease. Due to these features, CNPs appear well-suited to tasks from environmental sciences or healthcare. Unfortunately, CNPs do […]

Modelling Non-Smooth Signals with Complex Spectral Structure

The Gaussian Process Convolution Model (GPCM; Tobar et al., 2015a) is a model for signals with complex spectral structure. A significant limitation of the GPCM is that it assumes a rapidly decaying spectrum: it can only model smooth signals. Moreover, inference in the GPCM currently requires (1) a mean-field assumption, resulting in poorly calibrated uncertainties, […]

Wide Mean-Field Bayesian Neural Networks Ignore the Data

Bayesian neural networks (BNNs) combine the expressive power of deep learning with the advantages of Bayesian formalism. In recent years, the analysis of wide, deep BNNs has provided theoretical insight into their priors and posteriors. However, we have no analogous insight into their posteriors under approximate inference. In this work, we show that mean-field variational […]

Machine learning-assisted industrial symbiosis: Testing the ability of word vectors to estimate similarity for material substitutions

A challenge of facilitating industrial symbiosis involves identifying novel uses of waste streams that can satisfy the demands of other industries. For these efforts, a variety of characteristics must often be considered. A mine of relevant knowledge has been gathered in resources such as academic journals and patent databases. However, in looking to harness the […]

AbstractDifferentiation.jl: Backend-Agnostic Differentiable Programming in Julia

(Best Poster Award)   No single Automatic Differentiation (AD) system is the optimal choice for all problems. This means informed selection of an AD system and combinations can be a problem-specific variable that can greatly impact performance. In the Julia programming language, the major AD systems target the same input and thus in theory can […]

Assessing the Cost of Network Simplifications in Long-Term Hydrothermal Dispatch Planning Models

The sustainable utilization of hydro energy relies on accurate estimates of the opportunity cost of the water. This value is calculated through long-term hydrothermal dispatch problems (LTHDP), and the recent literature has raised awareness about the consequences of modeling simplifications in these problems. The inaccurate representation of Kirchhoff’s voltage law under the premise of a […]

How Tight Can PAC-Bayes be in the Small Data Regime?

In this paper, we investigate the question: Given a small number of datapoints, for example N = 30, how tight can PAC-Bayes and test set bounds be made? For such small datasets, test set bounds adversely affect generalisation performance by withholding data from the training procedure. In this setting, PAC-Bayes bounds are especially attractive, due […]

The Gaussian Neural Process

Neural Processes (NPs; Garnelo et al., 2018a,b) are a rich class of models for meta-learning that map data sets directly to predictive stochastic processes. We provide a rigorous analysis of the standard maximum-likelihood objective used to train conditional NPs. Moreover, we propose a new member to the Neural Process family called the Gaussian Neural Process […]

Deep learning architectures for inference of AC-OPF solutions

Machine learning assisted optimal power flow (OPF) aims to reduce the computational complexity of these non-linear and non-convex constrained optimization problems by consigning expensive (online) optimization to offline training. The majority of work in this area typically employs fully connected neural networks (FCNN). However, recently convolutional (CNN) and graph (GNN) neural networks have also been […]